Inter-photon timing measurements captured by a passive single-photon sensitive camera enable unprecedented dynamic range
Digital camera pixels capture images by converting incident light energy into an analog electrical current, and then digitizing it into a binary representation. This direct measurement method, while conceptually simple, suffers from limited dynamic range: electronic noise dominates under low illumination, and the pixel’s finite full-well capacity causes saturation under bright illumination. Here we show that inter-photon timing information captured by a dead-time-limited single-photon detector can be used to estimate scene intensity over a much higher range of brightness levels. We experimentally demonstrate imaging scenes with a dynamic range of over ten million to one. The proposed techniques, aided by the emergence of single-photon sensors such as single-photon avalanche diodes (SPADs) with picosecond timing resolution, will have implications for a wide range of imaging applications: robotics, consumer photography, astronomy, microscopy and biomedical imaging.
Comments
Share This Article