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Abstract

Conventional low frame rate cameras result in blur
and/or aliasing in images while capturing fast dynamic
events. Multiple low speed cameras have been used pre-
viously with staggered sampling to increase the temporal
resolution. However, previous approaches are inef�cient:
they either use small integration time for each camera which
does not provide light bene�t, or use large integration time
in a way that requires solving a big ill-posed linear system.

We propose coded sampling that address these issues:
using N cameras it allowsN times temporal super-
resolution while allowing� N

2 times more light compared
to an equivalent high speed camera. In addition, it results
in a well-posed linear system which can be solved inde-
pendently for each frame, avoiding reconstruction artifacts
and signi�cantly reducing the computational time and mem-
ory. Our proposed sampling uses optimal multiplexing code
considering additive Gaussian noise to achieve the maxi-
mum possible SNR in the recovered video. We show how to
implement coded sampling on off-the-shelf machine vision
cameras. We also propose a new class of invertible codes
that allow continuous blur in captured frames, leading to
an easier hardware implementation.

1. Introduction
A video camera has limited temporal resolution which is

determined by the frame rate and exposure time of the cam-
era. Temporal events occurring faster than the frame rate of
a camera leads to aliasing in captured image sequence and
blur in individual frames due to the camera's �nite integra-
tion time. This blur could be because of motion of objects,
in which case it is referred to asmotion blur. However, tem-
poral change of intensities can also happen when there is no
motion in the scene, e.g., a �ickering light or LCD screen.
The goal of temporal super-resolution (SR) is to produce an
aliasing-free video, where for each frame the effective inte-
gration time is small enough to avoid blur. Thus, temporal
SR is more general than motion deblurring. In fact, motion
blur artifacts may be removed by temporal SR [22].

A high speed camera has a fundamental light capture
limit: if the frame rate isf frames/sec, the exposure dura-
tion cannot be greater than1=f sec. In addition, commercial
high speed cameras are expensive, require large bandwidth
and are limited to capture durations (few seconds) that can
�t in local memory. Multiple cameras have been used to
increase the temporal resolution by staggering the start of
integration across the frame time. UsingN cameras each
running at frame ratef , a video with an effective frame rate
of Nf can be recovered by staggering the start of each cam-
era's exposure window by1

Nf and interleaving the captured
frames in chronological order [28, 27]. However, the expo-
sure time is set to1

Nf , similar to an equivalent high speed
camera and thus this scheme is light-inef�cient. We refer
to this as point sampling and later show that it corresponds
to anidentity sampling matrix. The advantage here is that
reconstruction process simply involves interleaving the cap-
tured frames and does not have any reconstruction artifacts.

Shechtmanet al. [21, 22] combined several low frame
rate videos to obtain a high frame rate output using an op-
timization framework. Their approach allow �nite integra-
tion time to collect more light, which leads to motion blur
in captured videos. However, the �nite integration time of
the camera acts as a low pass box �lter and suppress high
temporal frequencies. Recovering the lost high frequency
information is inherently an ill-posed problem. Shechtman
et al. [22] use regularization to solve the resulting ill-posed
linear system to suppress the ringing artifacts. Moreover,
usingN cameras, they found that it is dif�cult to achieve a
temporal SR by a factor ofN . In addition, the reconstruc-
tion requires solving a huge sparse linear system (million
variables) for modest video size of256� 256� 16.

We propose coded sampling that is optimal in the sense
of maximizing the signal to noise ratio (SNR) of recovered
high speed video assuming additive Gaussian noise in mea-
surements. In our scheme, each low speed camera captures
a different linear combination of frames of the desired high
speed video. The linear combination is made invertible by
employing a sampling strategy based on S-matrices [20, 9]
and Hadamard multiplexing. Our approach overcomes the
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disadvantages of previous approaches: each camera can
gatherN=2 times more light compared to an equivalent
high-speed camera, and the reconstruction process is well-
posed, invertible and maximizes the output SNR. We show
later that the our sampling matrix is block diagonal, where
each block is identical and correspond to aN � N S-matrix.
Thus, the corresponding frames from each camera can be
processedindependentlyto recoverN output frames, lead-
ing to low computational time and memory requirements.
Our scheme does not require any regularization or image
priors and allowsN times temporal SR usingN cameras
with minimal possible reconstruction noise.

The optimal coded sampling typically leads to discontin-
uous or coded blur in captured frames and requires speci�c
triggering for implementation. While certain machine vi-
sion cameras may not support such triggering mechanism,
they frequently support simple external trigger mode with
continuous integration time. We propose invertible codes
allowing continuous integration time that could be imple-
mented on such cameras.
Contributions: Our paper makes the following contribu-
tions:

� We formulate the problem of temporal SR from multi-
ple low-frame videos as a sampling problem.

� We show that the optimal sampling is achieved via
coded sampling by taking invertible linear combina-
tions of time samples.

� We demonstrate how to implement coded sampling to
achieveN times temporal SR by usingN coded expo-
sure cameras. We also propose a new class of invert-
ible codes that allow continuous integration time for
easier implementation.

1.1. Bene�ts and limitations
Our approach allows more light capture compared

to [28] as well as avoids noise/reconstruction artifacts com-
pared to [21]. It leads to a well-posed linear system of
size N independentof the number of frames processed
and support streaming output due to independent process-
ing of frames. We use CCD cameras with global shutter
that avoid rolling shutter artifacts present in typical CMOS
cameras [28]. Our implementation shares some of the limi-
tations with [28, 21], since we also use non co-located mul-
tiple cameras. We assume that the scene is either relatively
planar or is far away from the camera so that the images can
be aligned using projective transforms similar to [28, 21].
Non-linearities in the imaging system such as specularities,
saturation, non-linear camera response and radiometric cal-
ibration errors lead to artifacts in the reconstructed high
speed video. Geometric calibration errors lead to spatial
jitter (wobbling artifacts) in reconstructed frames.

1.2. Related work

Multiplexed sampling has been used for increasing the
capture SNR in acquiring images under variable illumina-
tion [20]. This was extended in [19] to include the effect
of sensor noise and saturation. Our approach is similar,
but along the temporal dimension. Multiplexing angular
information by reducing spatial resolution has been used
for light�eld capture using lenslets [15] and masks [25].
Pupil-plane multiplexing to capture wavelength and polar-
ization information by reducing spatial resolution has been
proposed in [10]. Assorted pixels [14] perform a point-
sampling of multi-dimensional data and use learned prior
models for reconstruction.

Motion deblurring: Recent interest in computational pho-
tography has spurred signi�cant research in motion deblur-
ring algorithms. Ferguset al. [8] use natural image statistics
to estimate the point spread function (PSF) from a single
blurred image. Joshiet al. [12] estimate non-parametric,
spatially-varying blur functions by predicting the sharp ver-
sion of a blurry input image. Recent work on deblurring
algorithms [29, 23, 4] have shown promising results on mo-
tion blurred images. A coded exposure [18] camera makes
motion PSF invertible so that the resulting deconvolution
process becomes well-posed. Agrawal and Raskar [2] ana-
lyzed capture methods for single image motion deblurring
using the similar criterion of maximizing the SNR of the
deblurred output. Note that temporal SR is more general
than motion deblurring and can reduce motion blur artifacts
withoutany PSF estimation.

Camera arrays: Levoy and Hanrahan [13] presented one
of the earliest systems for capturing scenes from multiple
perspectives for static scenes. This was extended to dy-
namic scenes by Dayton Taylor [24] using a linear array
of still cameras. Wilburnet al. [28, 27] used camera arrays
for temporal SR as well as effects such as digital refocusing.
Similar to [21], we show an array of2 � 2 cameras for4X
temporal SR.

Super-resolution: Combining multiple low-resolution im-
ages to increase the spatial resolution is well-known [11,
6, 16]. A hardware solution using sub-pixel detector shifts
was shown in [7]. Baker and Kanade [5] analyzed lim-
its on achievable super-resolution factors. In [1], super-
resolution and deblurring were performed simultaneously
using a coded exposure camera. Shechtmanet al. [21] com-
bine space-time super-resolution in a common framework
by formulating the low frame rate videos aslow-pass �l-
tered samples of high resolution space-time videos. They
also propose combining still images with video. Our ap-
proach analyzes the most general sampling by imaging the
low frame rate video ascodedsamples of high frame rate
video. Similar to [21], spatial SR can also be incorporated
in our approach, but we focus on temporal SR only.
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Figure 1. Comparison of sampling techniques usingN = 4 . The frame timeT in
f of each cameraCi is same. Point sampling captures

independent samples across time withT out = T in = T in
f =N. Box sampling collect more light (T in = T in

f ) but captures low pass �ltered
samples, making it ill-posed. Coded sampling captures invertible linear combination of samples over time. Interleaving reduces frame
time T out

f = T in
f =N only for point and box sampling. Box and coded sampling requires solving a linear system to reduce the effective

integration timeT out .

2. Temporal aliasing and blur
Temporal aliasing and motion blur are related but distinct

visual effects in low frame rate videos. LetTf be theframe
timeof the camera (inverse of the frame rate) and letT �
Tf be the integration time of each frame.Tf determines
howfastthe camera samples the temporal variations at each
pixel, whileT determines howlongthe camera integrates at
that sampling rate. Depending on the relationship between
T, Tf and the Nyquist sampling rate, one can either have
blur, aliasing, a combination of both or none in the captured
video. Aliasing occurs when the sampling rate is smaller
than the Nyquist sampling rate, and it can occur along with
blur if integration timeT is large. A high speed camera
avoids both blur and aliasing by sampling faster and keeping
the integration timeT suf�ciently small. Note that sinceT
cannot be greater thanTf for a camera, a high speed camera
has a fundamental light capture limitation.

To achieve temporal SR, it is important to consider both
(a) increase in frame rate or decrease in frame timeTf , and
(b) decrease in integration timeT. Either one is not suf�-
cient enough. For example, one can always decrease the in-
tegration timeT of a single camera to avoid motion blur, but
since the frame rate is not increased, it will result in alias-
ing. On the other hand, consider interleaving frames from
N cameras havingT = Tf , by evenly spacing the start of
the integration time across the frame time (Figure 1 (mid-
dle)). The interleaved video will automatically have higher
frame time, since the temporal events are sampled faster.
One can avoid aliasing artifacts in such an interleaved video,
but due to large integration time, temporal blur will remain.
Thus, the goal of temporal SR is to both remove aliasing
andreduce blur in the reconstructed video frames.

2.1. Removing aliasing by interleaving frames
Figure 1 (left) shows the simplest way to achieve tem-

poral SR, which we refer to as point sampling. By inter-
leaving the start of integration, one can useN cameras each
with a frame timeT in

f and integration timeT in = T in
f =N

to remove aliasing, and obtain a video with frame time
Tout

f = T in
f =N. Note thatTout = T in and blur is avoided

by keepingT in small. This implementation is the one pro-
posed in [28]. Note that point sampling does not have light
advantage compared to an equivalent high speed camera.
However, no extra processing is required and output does
not have reconstruction noise or artifacts.

Speci�cally, considerN co-located cameras each with
same frame timeT in

f . Let T i
s (k) andT i

e(k) denote the start
and end of integration of camerai for framek. Let the �rst
camera (i = 0 ) starts integrating the �rst frame (k = 0 ) at
T0

s (0) = 0 . If all cameras start integration at the same time
for each frame, thenT i

s (k) = kT in
f . Let vi (x; y; k) denote

the i th camera video. Theinterleaved videou(x; y; k) is
de�ned as the video obtained by temporally interleaving the
corresponding frames from all cameras

u(x; y; k) = va(x; y; b); b =
�

k
N

�
; a = k � Nb: (1)

If the start of integration is interleaveduniformlyaccording
to

T i
s (k) = kT in

f + iT in
f =N; (2)

then the interleaved video has a smaller frame time of
Tout

f = T in
f =N (higher frame rate). This is because the

interleaved video frames correspond to samples at the inter-
vals ofTout

f . Note that for an interleaved video, the integra-
tion time can belarger than the frame time, not possible for
a conventional camera.

2.2. Light ef�ciency: box and coded sampling
Now consider the box sampling strategy (Figure 1 (mid-

dle)), which allow more light but introduces motion blur
in the captured frames. In [22], a general framework with
different start and integration time of input videos were pro-
posed. But in essence their technique is similar to box sam-
pling shown in Figure 1 (middle). Since the start of integra-
tion is interleaved, the interleaved video has higher frame
rate, but needs to be processed to remove blur (to achieve ef-
fective lower integration time). However, the blur is caused



Sampling Captured Video Interleaved Video Reconstruction Linear System FIS Light Bene�t Computation
Blur Aliasing Blur Aliasing

Point No Yes No No Not Required Well-posed Yes No None
Box Yes Yes Yes No Solve Linear System Ill-posed No Yes Depends onK

Coded Yes Yes Yes Yes Solve Linear System Well-posed Yes Yes Constant
Figure 2. Comparison of sampling techniques for achievingN times temporal SR usingN cameras. Box sampling requires solving a
NK � NK ill-posed linear system forK frames, while coded sampling allows independent linear systems of sizeN � N .

by a continuous box �lter in each camera which suppress
high temporal frequencies. The processing thus involves
solving an ill-posed linear system.

Our proposed coded sampling is shown in Figure 1
(right). We also allow motion blur in captured frames, but
in the most general form of coded blur. In each camera for
each frame, the shutter is open and closed according to a
code, resulting in discontinuous or coded blur. The code is
chosen so as to preserve high temporal frequencies in the
captured images and leads to a well-posed linear system.
More importantly, the linear system can be solved indepen-
dently for each set of captured frames. A key distinction
with box sampling is that the start of integration is not in-
terleaved exactly, and thus the interleaved video could have
aliasing artifacts.
Frame independent sampling (FIS): Let Ts(k) =
min i T i

s (k) and Te(k) = max i T i
e(k). Ts(k) and Te(k)

denote the bounds of integration time of the corresponding
frames of all cameras. We call a sampling strategyframe
independent sampling(FIS) if Ts(k + 1) � Te(k) for all k.
Thus for FIS, the temporal information in the corresponding
camera frames is not shared across frames and reconstruc-
tion can be done independently for the set of correspond-
ing camera frames. Figure 1 shows that point and coded
sampling are FIS, but box sampling is not. We later show
that FIS results in block diagonal sampling matrices, while
frame dependent sampling (FDS) does not. Figure 2 shows
an in-depth comparison between the sampling schemes.

3. Sampling matrices and linear system
The above sampling techniques can be described in

terms of a linear system governed by asampling ma-
trix, which describes the relationship between theN input
videos and output video. Previous approaches are equiv-
alent to either an identity sampling matrix as in [28], or
an ill-posed sampling matrix which is not block diagonal-
izable [22]. Coded sampling results in an invertible block
diagonal sampling matrix.

For co-located cameras, each pixel is independent and so
we drop the spatial coordinates for ease of discussion1. Let
s denote the intensity vector of a pixel in the output video
at integration timeTout . Let u denote the interleaved vec-
tor for the pixel, obtained by stacking corresponding pixels
from each camera according to (1). The sampling matrixA
relates the interleaved low resolution video and the desired

1In practice, one needs to geometrically align the images.

high resolution video as

u = As: (3)

For point sampling, it is easy to see that matrixA is an iden-
tity matrix of sizeN � N for everyN interleaved frames.
For N = 4 ,

u(k) =

2

6
6
4

v1(k)
v2(k)
v3(k)
v4(k)

3

7
7
5 =

0

B
B
@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C
C
A s(k): (4)

This is because each camera samples the high resolution
video at a distinct time instant. Each1 or 0 of the sam-
pling matrix corresponds to a sample in the output video at
the integration timeTout . If we takeK video frames from
each camera, the resultingA matrix correspond to an iden-
tity matrix I NK � NK , which is trivially block diagonalized
by I N � N .

For box sampling, the sampling matrix(N = 4) corre-
sponds to

u =

2

6
6
6
6
6
4

1 1 1 1 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0

0 0 0 0
...

.. .
. . .

. . . 0

3

7
7
7
7
7
5

s: (5)

Note that the sampling matrix does not have independent
blocks of sizeN � N .

3.1. Optimal sampling
The optimal sampling is the one which minimizes the

mean square error (MSE) in estimating the outputs from
captured interleaved videou. Assuming IID zero mean
Gaussian noise with variance� 2 in u, the maximum-
likelihood (ML) estimate of output,bs is given by

bs = ( AT A) � 1AT u: (6)

Thus, the covariance matrix� of the errors � bs in the esti-
mate is given by [17]

� = � 2(AT A) � 1AT A(AT A) = � 2(AT A) � 1: (7)

The MSE increases by a factorF = trace (AT A) � 1=n,
wheren is the size ofu. A similar problem was studied
by Schechner and Nayar [20] for capturing images under
multiplexed illumination. The matrixA which minimizes
the above MSE is called the S-matrix [20]. IfN + 1 is
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Figure 3. Reconstruction MSEF in dB. (Left) As N increases,
coded sampling offers higher SNR than point and box sampling.
(Right) Coded and point sampling MSE's are independent of num-
ber of frames processed due to being FIS. For box sampling, MSE
increase withK .

divisible by4, then the rows of the S-matrix correspond to
Hadamard codes of lengthN +1 . For S-matrix, the increase
in noiseF = 4N

(N +1) 2 , which is lessthan 1, indicating a
multiplex advantage [20].

S-matrices have following properties. Firstly, each
value is either0 or 1. This implies that each row of the S-
matrix correspond to the on/off sequence of a coded expo-
sure camera [18]. Note that each bit of the code corresponds
to a sample in the output video. Thus, each bit amounts to
integration time ofTout . A 1 implies that the shutter is kept
transparent and0 implies that the shutter is kept opaque for
the durationTout within the integration time of the cam-
era. Secondly, each row has(N + 1) =2 ones implying that
each camera integrates(N + 1) =2 times more light com-
pared to an equivalent high speed camera. Finally, inverting
S-matrix is easy as shown in [20].

Code search: Note that S-matrices are not de�ned for
all N . For smallN , one can search for all possible binary
matrices and choose the one with the lowestF . In order to
enforce at least50%light throughput, each row should have
at leastN=2 ones. ForN = 4 , we search for all216 choices
(took 10 seconds in Matlab) and choose the optimal coding
matrixC which minimizesF , given by

C =

2

6
6
4

1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1

3

7
7
5 : (8)

For K frames, the sampling matrixA4K � 4K =
kron (I K � K ; C), wherekron denotes the kronecker prod-
uct. The corresponding sampling is visualized in Figure 1
(right). For largeN , one can perform a randomized greedy
search similar to the search for best motion deblurring code
in [18]. Typically, it requires few minutes in Matlab to
search106 codes.

Reconstruction noise:Figure 3 plots10 log10 F for the
three sampling techniques to depictincreasein noise (dB)
assumingK = 30 input frames fromN cameras. Note that
FdB is 0 for point sampling and less than0 for coded sam-
pling indicating SNR gain. AsN increases, the reconstruc-
tion noise for box sampling does not decrease. Thus, box

Ringing

High Speed (Ground Truth) Box Sampling Coded Sampling

Box Coded Error Box Error Coded

Noise

Ground Truth

Figure 4.15 cameras were simulated using a high-speed video for
coded and box sampling. (Top) Three frames from high-speed,
box and coded sampling videos. (Bottom) One of the recon-
structed frame and corresponding error images. Notice the ringing
artifacts and enhanced noise in box sampling reconstruction.

sampling is inherently ill-posed. For coded sampling, more
cameras allow more temporal SR with even lower MSE.
Note that even atN = 4 , coded sampling is better by15
dB than box sampling. Another interesting observation is
that MSE increases for box sampling as number of frames
K increase. But since coded and point sampling are FIS,
MSE isindependentof K for them.

Figure 4 shows a simulation using a500fps high speed
video of marbles falling into water.N = 15 low frame
rate videos were simulated both for box and coded sam-
pling and Gaussian noise (� = 0 :1) was added in frames.
The top row shows three frames from the ground truth, box-
sampling and coded-sampling videos respectively. Bottom
row shows one of the reconstructed frames along with the
error images. Notice the enhanced noise and ringing arti-
facts in the box reconstruction. The coded reconstruction
gives an artifact and noise free output. The increase in MSE
(F ) was32 times (15dB) smaller for coded sampling com-
pared to box sampling. Please see the supplementary mate-
rials for full videos.

3.2. Invertible codes with continuous blur
In general, optimal coded sampling leads to discontin-

uous blur in captured frames. However, this requires each
camera to start and stop integration multiple timeswithin
the exposure time according to its code. While this fea-
ture is available in some machine vision cameras (Point-
grey Dragon�y2 [3]), several machine vision cameras do
not support it. Such cameras often support external trigger-
ing followed by acontinuousintegration time. This implies
that while the start of integration time can be changed, only
codes that have continuous ones can be supported. Can we
have invertible codes that allow continuous (box) blur?

We show that one can obtain such sampling with an in-
crease in MSE compared to optimal sampling. A trivial con-
tinuous blur invertible code matrix forN = 4 is given by



Figure 5. Our prototype using four cameras. A micro-controller
(PIC) is used to trigger the cameras accurately.
2

6
4

1 0 0 0
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1 1 1 1

3

7
5 : We refer it to astriangular codes since

the code matrix is a lower triangular matrix. The recon-
struction noise here is larger than optimal sampling by4 dB
only for N = 4 . However, triangular codes require a large
dynamic range, since the exposure time between cameras
changes by a factor ofN . Ideally, we would like all codes
to integrate similar amount of total light to avoid dynamic
range issues. To achieve that, we search for continuous ones
codes each having at least50%light throughput.

Search space:For each camera, the code can haveN
2 ,

N
2 + 1 , : : :, N ones which can occur inN2 + 1 , N

2 , : : :, 1
places respectively. Therefore, the possible code choicesfor
a single camera arec = (N +2)( N +4)

8 . The total search space
is thus

� c
N

�
. For N = 4 , the code matrix with minimum

MSE2 was found to be2

6
6
4

1 1 0 0
1 1 1 0
0 1 1 0
0 1 1 1

3

7
7
5 : (9)

Note that each row has continuous ones and thus would lead
to box blur, but overall the linear system is well-posed. For
N = 4 , these codes are better than box sampling by10
dB. These codes can also be thought of as traditional cam-
eras with varying exposure and start times. While Shecht-
manet al. [22] also allows cameras with varying exposure
and start time, their resulting system is not well-posed since
the exposure and start times are not carefully chosen. The
proposed codes here do not require regularization for re-
construction and lead to a frame-independent sampling in
contrast to [22].

4. Implementation and results
Figure 5 shows our implementation using four Pointgrey

Dragon�y2 cameras, each equipped with12 mm computar
lens. The cameras are arranged to keep their optical centers
as close as possible and are kept� 2m away from the scene.
Similar to [28], we assume that the scene is planar and
perform geometric calibration using a checkerboard. We
capture RAW images at resolution of700� 700 to reduce
bandwidth and perform Bayer interpolation using Pointgrey
SDK. After geometric calibration, the common �eld of view
is spanned by400� 400 pixels. Color calibration is done

2There could be multiple solutions with same minimum MSE.
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Captured Frames

Reconstructed Frames

Figure 6. Captured and reconstructed frames for rotating fan using
codes with continuous ones (9). In comparison with Figure 7, the
reconstruction has more noise than coded sampling, but is sharper
than box sampling.

using a Macbeth chart by computing a3 � 3 color transfor-
mation for each camera. Dragon�y2 cameras support coded
exposure via trigger mode53. All cameras are triggered us-
ing a Microchip PIC16F690 micro-controller which avoids
temporal synchronization issues. We found that this was
more stable than using a PC's parallel port [3], which could
have trigger variations of1 ms. We useT in

f = 60 seconds,
capturing the input videos at16Hz. The reconstructed video
has frame rate of64Hz using4 cameras, with frame integra-
tion timeTout = 15 seconds. As described in [21], the out-
put video will be similar to the one captured with a camera
havingTout integration time. Thus, if the scene is chang-
ing faster than64Hz, the output video frames will also have
blur. Please see videos in supplementary materials.

Rotating fan: Figure 7 shows comparison of coded and
box sampling for a fan rotating clockwise. Notice the coded
blur in frames for coded sampling. The reconstructed fan
blades are much sharper and closer to ground truth in coded
reconstruction. The box reconstruction shows noise and
ringing artifacts without regularization. By using regular-
ization similar to one proposed in [21], noise can be re-
duced but blur cannot be removed completely. Thus, it is
dif�cult to achieve N times SR withN cameras using box
sampling, as also discussed in [21]. The reconstruction us-
ing coded sampling was obtained without any regulariza-
tion. Similar videos were captured using continuous ones
codes (9) by changing the trigger mechanism using PIC.
Figure 6 shows corresponding captured and reconstructed
frames. The reconstruction has more noise than coded sam-
pling, but is sharper than box sampling.

Oscillating color chart: Figure 8 shows results on a
scene where a Macbeth color chart was moved back and
forth by hand. Note the enhanced noise and color/ringing
artifacts in box reconstruction if no regularization is used.
This shows that box sampling is inherently ill-posed. The

3Pointgrey requires delay between frames in trigger mode5, which
leads to an equivalent gap in reconstructed video after every N frames. It
could be avoided by using external shutter [18].
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Figure 7. Comparison of box and coded sampling for a fan rotating clockwise. Coded sampling provides sharper reconstruction without
any regularization compared to box sampling which has more noise and reconstruction artifacts.
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Figure 8. Moving Color Chart. Without regularization, box reconstructionhas enhanced noise, color and ringing artifacts. Regularization
can suppress noise at the expense of more blur (less temporal SR). In contrast, coded reconstruction produce sharp color edges on the color
chart without using any regularization.

reconstruction using coded sampling was obtained without
any regularization.

Facial expressions: Figure 9 shows a person making
fast facial expressions. Notice the `double' teethes in cap-
tured frames corresponding to camera with code1001. The
reconstructed frames show reduced blur without any motion
estimation.

5. Discussions
Coded sampling promises exciting avenues for computa-

tional photography and vision research beyond motion de-
blurring [18]. The ability to capture more light and have im-
mediate streaming reconstruction without reconstructionar-
tifacts for temporal SR is a big bene�t. This could be useful
for medical imaging such as laryngoscopy and endoscopy,
where reconstruction artifacts are undesirable. Combining
coded sampling in time with coded aperture techniques [25]

can lead to a uni�ed treatment of motion and focus blur,
which are generally handled separately. Utilizing image
priors and domain knowledge can allow greater thanN
super-resolution factors withN cameras. We use the same
code for each camera across frames, but due to frame-
independent sampling, the codes can be dynamically modi-
�ed as in [26]. Similar to [19], intensity dependent Poisson
noise and saturation effects can also be incorporated for bet-
ter codes. While our implementation uses four cameras, it
is easily scalable by using external triggering based on pro-
posed codes. By usingsametemporal modulation for few
cameras (out ofN ), spatial SR can be achieved at the cost
of temporal SR.

Conclusions: We formulated temporal SR using multiple
low frame rate videos as a sampling problem and analyzed
its motion blur and aliasing aspects. We showed that op-
timal sampling for temporal SR involves taking invertible



(0 1 0 1)

Coded Blur

Reconstructed FramesCaptured Frames (Coded sampling)
(1 0 0 1)

Figure 9. Facial expressions. (Left) Two frames from captured
video corresponding to cameraC2 andC3 with codes0101 and
1001. (Right) Frames from reconstructed video. Blur in captured
frames is removed via temporal SR without any motion estimation.

linear combination of frames, which can be implemented
using multiple coded exposure cameras. Our proposed sam-
pling captures more light compared to an equivalent high
speed camera, and results in a well-posed linear system
which can be solved independently for frames. Thus, it
overcomes the limitations of previous approaches in terms
of light capture, reconstruction noise, and computational
requirements. We also proposed a new class of invertible
codes that lead to an easier implementation on most ma-
chine vision cameras.
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